“Alexa, add voice shopping to my to-do list”

Amazon is promoting voice shopping as part of its deals for Prime Day next week. Shoppers will get $10 credit just for making their first voice purchase from a list of “Alexa Deals“, items that are already greatly discounted. That’s a major incentive just to push consumers into something that should actually be a great benefit – effortless, simple, zero-click shopping. Why does Amazon have to go through so much trouble to get shoppers to use something that’s supposedly so helpful?

To understand the answer, it’s worthwhile to first understand how valuable voice shopping is for Amazon. In all demos and videos for the various Alexa devices, voice shopping is positioned as the perfect tool for spontaneous, instant ordering purchases, such as “Alexa, I need toilet paper / diapers / milk / dog food / …” That easily explains why you would need to be an Amazon Prime subscriber in order to use voice shopping, and getting Prime to every household is a cornerstone to Amazon’s business strategy.

In addition, Alexa orders are fulfilled by 1-click  payment, yet another highly valuable Amazon tool. Amazon also guarantees free returns for Alexa purchases, just in case you’re concerned about getting your order wrong. Now, combine all of these together and you can see how voice shopping is built to create a habit, of shopping as a frictionless, casual activity. That is probably also why the current offer does not apply for voice shopping from within Amazon’s app, as the long process of launching it and reaching the voice search in it ruins the spontaneity.

And yet – shoppers are not convinced. In last year’s Prime Day, a similar promotion offered by Amazon drove on average one voice order per second. This may sound like a lot, but ~85K orders are still a tiny fraction of the total ~50M orders consumers placed on Amazon that day. This year Amazon raised the incentive even further, which indicates there is still much convincing to do. Why is that?

Mute Button by Rob Albright @ Flickr (CC)

For starters, Amazon’s Alexa devices were never built to be shopping-only. Usage survey reports consistently show that most users prefer to use the Alexa assistant to ask questions, play music, and even to set timers, much more than to shop. This does not mean that Amazon has done a bad job, quite the contrary. Voice shopping may not be that much of a habit initially, and getting used to voice-controlling other useful skills helps build habit and trust. Problem is, when you focus on non-shopping, you also get judged by it. That’s how Amazon gets headlines such as “Google Assistant is light-years ahead of Amazon’s Alexa“, with popular benchmarks measuring it by search, question answering and conversational AI, fields where Google has historically invested more than Amazon by orders of magnitude. The upcoming HomePod by Apple is expected to even further complicate Amazon’s stand, with Apple growing to control the slot of a sophisticated, music-focused, high-end smart home device.

The “How it works” page for the Prime Day Alexa deals hints at other issues customers have with shopping in particular. Explanations aim to reassure that no unintended purchases take place (triggered by your kids, or even your TV), and that if your imperfect voice interaction got you the wrong product, returns are free for all Alexa purchases. These may sound like solved issues, but keep in mind the negative (and often unjustified) coverage around unintended purchases has sent countless Echo owners to set a passcode on ordering, which is actually a major setback for the frictionless zero-click purchasing Amazon is after.

But most importantly, voice-only search interfaces have not yet advanced to support interactions that are more complex than a simple context-less pattern recognition. It’s no accident that the most common purchase flows Alexa supports are around re-ordering, where the item is a known item and no search actually takes place. This means that using Alexa for shopping may work well only for those simple pantry shopping, assuming you already made such purchases in the past. Google, on the other hand, is better positioned than Amazon in this respect, having more sophisticated conversational infrastructure. It even enables external developers to build powerful and context-aware Google Assistant apps using tools such as api.ai (for a quick comparison on these developer platforms, see here).

So what might Amazon be doing to make voice shopping more successful?

Re-ordering items is the perfect beginner use-case, being the equivalent of “known item” searches. Amazon may work on expanding the scope of such cases, identifying additional recurring purchase types that can be optimized. These play well with other recent moves by Amazon, such as around grocery shopping and fulfillment.

Shopping lists are a relatively popular Alexa feature (as well as on Google Home), but based on owner testimonials it seems that most users use these for offline shopping. Amazon is likely working to identify more opportunities for driving online purchases from these lists.

Voice interface has focused mainly on a single result, yielding a “I’m Feeling Lucky” interaction. Using data from non-voice interactions, Amazon could build a more interactive script, one that could guide users through more complex decisions. An interesting case study for this has been eBay with its “ShopBot” chatbot, though transitioning to voice-only control still remains a UX challenge.

And finally – it’s worth noting that in the absence of an item in the purchase history (or if the user declines it), Alexa recommends products from what Amazon calls “Amazon’s Choice“, which are “highly rated, well-priced products” as quoted from this help page. This feature is in fact a powerful business tool, pushing vendors to compete for this lucrative slot. In the more distant future, users may trust Alexa to the point of just taking its word for it and assuming this is the best product for them. That will place a huge lever in Amazon’s hands in its relationship with brands and vendors, and it’s very likely that other retailers as well as brands will fight for a similar control, raising the stakes even more on voice search interfaces.

Feeling Lucky Is the Future of Search

If you visit the Google homepage on your desktop, you’ll see a rare, prehistoric specimen – one that most Google users don’t see the point of: the “I’m Feeling Lucky” button.

Google has already removed it from most of its interfaces, and even here it only serves as a teaser for various Google nitwit projects. And yet the way things are going, the “Feeling Lucky” ghost may just come back to life – and with a vengeance.


In the early years, the “I’m Feeling Lucky” button was Google’s way of boldly stating “Our results are so great, you can just skip the result lists and head straight to destination #1”. It was a nice, humorous touch, but one that never really caught on as users’ needs grew more complex and less obvious. In fact, it lost Google quite a lot of money, since skipping the result list also meant users saw fewer and fewer sponsored results – Google’s main income source. But usability testing showed that users really liked seeing the button, so Google kept it there for a while.

But there’s another interface rising up that prides itself on returning the first search result without showing you the list. Did you already guess what it is?


Almost every demo of a new personal assistant product will include questions being answered by the bot tapping into a search engine. The demos will make sure to use simple single-answer cases, like “Who is the governor of California?” That’s extremely neat, and was regarded as science fiction not so many decades ago. Amazing work on query parsing and entity extraction from search results has led to great results on this type of query, and the quality of the query understanding, and resulting answers, is usually outstanding.


However, these are just some of the possible searches we want our bots to run. As we get more and more comfortable with this new interface, we will not want to limit ourselves to one type of query. If you want to be able to get an answer for “Give me a good recipe for sweet potato pie” or “Which Chinese restaurants are open in the area now?”, you need a lot more than a single answer. You need verbosity, you need to be able to refine – which stretches the limits of how we perceive conversational interfaces today.

Part of the problem is that it’s difficult for users to understand the limits of conversational interfaces, especially when bot creators pretend that there are no such limits. Another problem lies in the fact that a natural language interface may simply be a lousy choice for some interaction types, and imposing it on them will only frustrate users.

There is a whole new paradigm of user interaction waiting to be invented, to support non-trivial search and refine through conversation – for all of those many cases where a short exchange and single result will probably not do. We will need to find a way to flip between vocal and visual, manage a seamless thread between devices and screen-based apps, and make digital assistants keep context on a much higher level.

Until then, I guess we’ll continue hoping that we’re feeling lucky.



Learning to Play

Ever since I took my first course in Artificial Intelligence, I have been fascinated by the idea of AI in its classical meaning – teaching machines to perform tasks deemed by us humans as requiring intelligence.

Recently, I gave a talk at my company on some of the intriguing instances of one of these tasks – learning to play (and win!) games. I often found the human stories behind the scenes even more fascinating than the algorithms themselves, and that was my focus in this talk. It was really fun both to assemble as well as deliver, so I wanted to capture these stories in this blog post, to accompany the embedded slides below.


So let’s get started!

a humble start

Game playing is a fantastic AI task, one that researchers were always excited about. Just like a toddler being taught to swing a baseball bat by an excited parent, the algorithm gets clear rules, a measurable goal and training input. But above all, testing the result involves the fun act of playing against the opponent you yourself have created, just like a proud parent. What a great way to do AI research!

As we go way back in the AI time machine, the first known implementation of an AI game was in 1950. Josef Kates was a young Jewish Austrian engineer, whose family fled the Nazis’ rise to power and ended up in Canada. Kates worked on radar and vacuum tubes design at a company named Rogers Majestic, and later developed his own patented tube, which he called the Additron. While waiting for the patent to be registered, he wanted to demonstrate the power of his invention in a local technology fair, so he built a machine that could play Tic-Tac-Toe, calling it “Bertie the Brain”.

Comedian Danny Kay pleased after "beating" Bertie the Brain during the fair

Comedian Danny Kaye pleased after “beating” Bertie the Brain during the fair

“Bertie the Brain” was a huge success at the fair. Kates made sure to adjust its level of difficulty to allow players to occasionally beat it, and visitors lined up to play. Nevertheless, at the end of the fair it was dismantled and forgotten. Unfortunately for Kates, the Additron took a very long time to go through patenting, and by the time it was approved technology had already moved on toward transistors.

minimaxThe algorithms pioneered and used in those early days were based on the Minimax method – constructing a tree of all possible moves by the player and opponent, and evaluating the proximity to a winning position. In each move, the algorithm would assume best play with the computer playing the move with MAXimal value and the opponent playing its own maximum, which is the computer’s MINimal value. Thus, the algorithm could calculate into the future as much as time allowed.

With only 765 unique board positions in Tic-Tac-Toe, the game was small enough that all positions and moves could be calculated in advance, making Bertie unbeatable. AI researchers call this situation a “Solved” game. In fact, perfect game play will always end in a draw, and if you watched the 1983 movie “War-Games” with Matthew Broderick, you’ll recall how this fact saved the world from nuclear annihilation…

advance to world-class wins

So if Tic-Tac-Toe is too simple, how about a more complex game such as checkers?

Checkers has, well, slightly more board positions: at 5 x 1020 board positions, it was a much more challenging AI task. The best-known checkers program, even if not the first, was the one written by Arthur Samuel at IBM. Samuel’s checkers was considered a real classic, and for several decades it was considered the best that can be achieved. It still used Minimax, but expanded its repository of board positions from actual games played, often against itself, thus becoming a true learning algorithm. However, it never got to the level of beating master human players.


In 1989, a group of researchers – led by Jonathan Schaeffer from the University of Alberta – set out to use advances in computing and break that glass ceiling with a new program called Chinook. I had the privilege of attending a fascinating talk by Schaeffer at the Technion 10 years ago, and the blog post I wrote subsequently summarizes the full story. That story has fascinating twists and touching human tributes in it, but it ends with machines being the clear winners – and with AI researchers declaring the game of checkers as solved as well.

The obvious next challenge in our journey would be what’s considered the ultimate game of intelligence – chess. Using the same board as checkers, but with more complex moves, chess has approximately 10120 board positions – that’s about the number of checkers positions, squared. A famous chess-playing machine was The Turk, designed and constructed in Austria by Wolfgang von Kempelen as early as 1770. The Turk was a wonder of its age, beating experienced chess players and even Napoleon Bonaparte. It was a hoax, of course, cleverly hiding a human sitting inside it, but the huge interest it created was a symbol of the great intelligence attributed to playing the game.

kasparovThe huge search space in which Minimax had to be applied for chess made early programs extremely weak against humans. Even with the introduction of minimax tree-pruning methods such as Alpha-Beta pruning, it seemed like no algorithmic tuning would produce a breakthrough. As the decades passed, though, more powerful computers enabled faster computations and larger space to hold billions of possible board positions. This culminated in the famous 1996 duel between IBM’s Deep Blue chess-playing computer – already capable of evaluating 200 million positions per second – and the world champion at the time, Garry Kasparov. Despite losing two games to the supercomputer, Kasparov won the tournament easily, 4-2. IBM went on to further improve Deep Blue and invited Kasparov to a re-match the following year. Kasparov won the first game easily, and was so confident as a result that he lost the next game, a loss he blamed on cheating by IBM. The match ended 3.5-2.5 to Deep Blue, a sensational first win for a machine over a presiding world champion.

from brute force to TRUE learning

The shared practice that connected all the work we saw so far – from Bertie the Brain to Deep Blue – was to feed huge amounts of knowledge to the software, so that it could out-do the human player by sheer computing power and board positions stored in its vast memory. This enabled algorithms such as Minimax to process enormous numbers of positions, apply the human-defined heuristics to them and find the winning moves.

Let’s recall the toddler from the start of our journey. Is this how humans learn? Would we truly consider this artificial intelligence?

If we want to emulate true intelligence, what we’d really like to build are algorithms that learn by themselves. They will watch examples and learn from them; they will build their own heuristics; they will infer the domain knowledge rather than have it fed into them.

In 2014, a small London start up named DeepMind Technologies, founded less than three years earlier, was acquired by Google for the staggering sum of $600 million before it had released even one product to the market. In fact, reporters struggled to explain what DeepMind was doing at all.

deepmind-logoThe hints at what attracted Google to DeepMind lie in a paper its team published in December 2013. The paper, presented in NIPS 2013, was titled “Playing Atari with Deep Reinforcement Learning“. It was about playing games, but unlike ever before. This was about a generic system, learning to play games without being given any knowledge, nothing but a screen and the score-keeping part in it. You could equate it to a human who had never played Pac-Man, taking the controls and just hitting them in all directions, watching the score and gradually figuring out how to play it like a pro and then doing the same for many other games, all using the same method. Sounds human? This was the technology Google was after.

Watching DeepMind play Atari Breakout (seen in this video) is like magic. The algorithm starts out moving randomly, barely hitting the ball once every many misses. After an hour of training, it starts playing at an impressive pro level. Then it even learns the classic trick that any Breakout player eventually masters – tunneling the ball to the top so that it hits bricks off with little effort. The beauty of it all was that the exact same system mastered several other games with no custom optimizations – only the screen raw input and an indication of where the score is, nothing else. This was no Minimax running, no feeding of grandmaster moves books or human-crafted heuristic functions. It was generic deep-learning neural networks, using reinforcement learning that would look at a series of moves and their score outcome, and uncover the winning patterns all by itself. Pure magic.

AI Building games

For the last part of the talk, I deviated to a related topic. For this part, I was walking through a wonderful series of blog posts I stumbled upon called “Machine Learning is Fun!”, where the author, Adam Geitgey, walks through basic concepts in Machine Learning. In part two, he describes how Recurrent Neural Networks can be trained to learn and generate patterns. The simplest example we all know and appreciate (or sometimes not…) is the predictive text feature of mobile keyboards, where the system attempts to predict what word we are trying to type – the cause of so many great texting gaffes.

Moving to more elaborate examples, Geitgey fed an RNN implementation with a Hemingway book (“The Sun Also Rises”), and trained it recurrently on the book’s text, then having it spit out texts of its own that would match the book. It starts out with incomprehensible strings of text, but gradually takes the form of words and sentences, to the point that the sentences almost make sense and retain Hemingway’s typically curt dialogue style.

Geitgey then takes this system and applies it to none other than the Super Mario Maker. This is a version of Super Mario that allows players to build levels of their own. He transforms game levels into text streams and feeds these into the learning system. Again here, at first the system spits out nonsense. But then it gradually learns the basic rules and eventually generates actual playable levels. I’m no expert on Super Mario so I couldn’t tell, but I showed it to my son and he said it’s a great level that he would be happy to play. That’s intelligent enough for me!



So Long, and Thanks for All the Links


Prismatic is shutting down its app.

I’ve been fascinated by algorithmic approaches to information overload for quite some time now. It seemed like one of those places where the Web changed everything, and now we need technology to kick in and make our lives so much easier.

Prismatic_logo,_June_2014Prismatic was one of the more promising attempts to that I’ve seen, and I’ve been a user ever since its launch back in 2012. Every time I opened it, it never failed to find me real gems, especially given the tiny setup it required when I first signed up. Prismatic included explicit feedback controls, but it seemed to excel in using my implicit feedback, which is not trivial at all for a mobile product.

flipboard-logo-iconFlipboard is likely the best alternative out there right now, and its excellent onboarding experience helped me get started quickly with a detailed list of topics to follow. With reasonable ad-powered revenue, which Prismatic seemed to shun for whatever reason, it is also less likely to shut down anytime soon. Prismatic still does a much better job than Flipboard in surfacing high-quality, long-tail, non-mainstream sources; let’s hope Flipboard continues improving to get there.

It seems, though, that news personalization is not such a strong selling point. Recently, Apple moved from a pure personalized play for its Apple News app to also add curated top stories, as its view counts disappointed publishers. In my own experience, even the supposed personalized feed was mostly made up of 3-4 mainstream sources anyway. Let’s hope that this is not where information overload is leading us back to. Democratizing news and getting a balanced and diverse range of opinions and sources is a huge social step forward, that the Web and Social Media have given us. Let’s not go backwards.

Marketing the Cloud

watsonIBM made some news a couple of days ago announcing consumers can now use Watson to find the season’s best gifts. A quick browse through the app, which is actually just a wrapper around a small dedicated website, shows nothing of the ordinary – Apple Watch, Televisions, Star Wars, Headphones, Legos… not much supercomputing needed. No wonder coverage turned sour after an initial hype, so what was IBM thinking?

tensorflowRewind the buzz machines one week back. Google stunned tech media, announcing it is open sourcing its core AI framework, TensorFlow. The splashes were high: “massive potential“, “Machine Learning breakthrough“, “game changer“… but after a few days, the critics were out, Quorans talking about the library’s slowness, and even Google-fanboy researchers wondering – what exactly is TensorFlow useful for?

Nevertheless, within 3 days, Microsoft quickly announced its own open source Machine Learning toolkit, DMTK. The Register was quick to mock the move, saying “Google released some of its code last week. Redmond’s (co-incidental?) response is pretty basic: there’s a framework, and two algorithms”…

So what is the nature of all these recent PR-like moves?


There is one high-profit business shared by all of these companies: Cloud Computing. Amazon leads the pack in revenue, and uses the cash flow from cloud business to offset losses on its aggressive ecommerce pricing, but also Microsoft and Google are assumed to come next with growing cloud business. Google even goes as far as predicting cloud revenue to surpass ads revenue in five years. It is the gold rush era for the industry.

But first, companies such as Microsoft, Google and IBM will need to convince corporates to hand them their business, rather than to Amazon. Hence they have to create as much “smart” buzz for themselves, so that executives in these organization, already fatigued by the big-data buzzwords, will say: “we must work with them! look, they know their way with all this machine-learning-big-data-artifical-intelligence stuff!!”

So the next time you hear some uber-smart announcement from one of these companies that feels like too much hot air, don’t look for too much strategy; instead, just look up to the cloud.

Thoughts on Plus – Revisited

plusTwo weeks ago, Google decided to decouple Google+ from the rest of the Google products, and to not require a G+ login when using those other products (e.g. YouTube), in effect starting to gradually relieve it from its misery. Mashable published excellent analysis on the entire history of the project, and of the hubris demonstrated by Vic Gundotra, the Google exec who led it.

Bradley Horowitz, who conceived Google+ along with Gundotra and is now the one to oversee the transition, laid out the official Google story in a G+ blog post. He talked of the double mission Google assigned to the project – become a unifying platform, as well as a product on its own. A heavy burden to carry, as in many cases these two missions will surely conflict each other and mess up the user experience, as they did. Horowitz also explains what G+ should have focused on, and now will: “…helping millions of users around the world connect around the interest they love…”

Well, unfortunately Horowitz seems to not be a regular reader of Alteregozi 🙂 Had he read this post, exactly 4 years ago right here, perhaps G+ would have had more of a differentiation, and a chance.

Microsoft Israel ReCon 2015 (or: got to start blogging more often…)

Yes, two consecutive posts on the same annual event are not a good sign to my virtual activity level… point taken.

MSILSo 2 weeks ago, Microsoft Israel held its second ReCon conference on Recommendations and Personalization, turning its fine 2014 start into a tradition worth waiting for. This time it was more condensed than last year (good move!) and just as interesting. So here are three highlights I found worth reporting about:

Uri Barash of the hosting team gave the first keynote on Cortana integration in Windows 10, talking about the challenges and principles used. Microsoft places a high empasis on the user’s trust, hence Cortana does not use any interests that are not explicitly written in Cortana’s notebook, validated by the user. If indeed correct, that’s somewhat surprising, as it limits the recommendation quality and moreover – the discovery experience for the user, picking up potential interests from the user’s activity. I’d still presume that all these implicit interests are probably used behind the scenes, to optimize the content from explicit interests.

ibm_logoIBM Haifa Research Labs have been doing work for some years now on enterprise social networks, and mining connections and knowledge from such networks. In ReCon this year, Roy Levin presented a paper to be published in SIGIR’15, titled “Islands in the Stream: A Study of Item Recommendation within an Enterprise Social Stream“. In the paper, they discuss a feature for a personalized newsfeed included in IBM’s enterprise social network “IBM Connections”, and provide some background and the personalized ranking logic for the feed items.

They then move on to describe a survey they have made among users of the product, to analyze their opinions on specific items recommended for them in their newsfeed, similar to Facebook’s newsfeed surveys. Through these surveys, the IBM researchers attempted to identify correlations between various feed item factors, such as post and author popularity, post personalization score, how surprising an item may be to a user and how likely a user is to want such serevdipity, etc. The actual findings are in the paper, but what may actually be even more interesting is the deep dissection in the paper of the internal workings of the ranking model.

Outbrain-logoAnother interesting talk was by Roy Sasson, Chief Data Scientist at Outbrain. Roy delivered a fascinating talk about learning from lack of signals. He began with an outline of general measurement pitfalls, demonstrating them on Outbrain widgets when analyzing low numbers of of clicks on recommended items. Was the widget visible to the user? where was it positioned in the page (areas of blindness)? what items were next to the analyzed item? were they clicked? and so on.

Roy then proceeded to talk about what we may actually be able to learn from lack of sharing to social networks. We all know that content that gets shared a lot on social networks is considered viral, driving a lot of discussion and engagement. But what about content that gets practically no sharing at all? and more precisely, what kind of content gets a lot of views, but no sharing? Well, if you hadn’t guessed already, that will likely be content users are very interested to see, but would not admit to it, namely provocative and adult material. So in a way, leveraging this reverse correlation helped Outbrain automatically identify porn and other sensitive material. This was then not used to filter all of this content out – after all, users do want to view it… but it was used to make sure that the recommendation strip includes only 1-2 such items so they don’t take over the widget, making it seem like this is all Outbrain has to offer. Smart use of data indeed.